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Interval Management (IM) is a concept designed to be used by air traffic controllers and 

flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government 

and industry have been working together to develop the IM concept and standards for both 

ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and 

United Airlines to build and flight test an avionics prototype based on NASA’s spacing 

algorithm and conduct a flight test. The flight test investigated four different types of IM 

operations over the course of nineteen days, and included en route, arrival, and final approach 

phases of flight. This paper examines the spacing accuracy achieved during the flight test and 

the rate of speed commands provided to the flight crew. Many of the time-based IM operations 

met or exceeded the operational design goals set out in the standards for the maintain 

operations and a subset of the achieve operations. Those operations which did not meet the 

goals were due to issues that are identified and will be further analyzed. 

Nomenclature 

ABP   = Achieve-By Point 

ADS-B  = Automatic Dependent Surveillance – Broadcast 

ASG   = Assigned Spacing Goal 

ASTAR  = Airborne Spacing for Terminal Arrival Routes spacing algorithm 

ATD-1      = First Air Traffic Management Technology Demonstration 

CMS  = Controller Managed Spacing 

EFB  = Electronic Flight Bag 

FAA  = Federal Aviation Administration 

FAF  = Final Approach Fix 

FIM   = Flight deck Interval Management 

FMS  = Flight Management System 

GIM-S  = Ground-based Interval Management – Spacing 

IM    = Interval Management 
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KBFI        = Boeing Field / King County International Airport 

KMWH     = Grant County International Airport 

KSEA   = Seattle-Tacoma International Airport 

MOPS  = Minimum Operational Performance Standards 

NAS   = National Airspace System 

NASA   = National Aeronautics and Space Administration 

NOAA  = National Oceanic and Atmospheric Administration 

PTP   = Planned Termination Point 

RNAV  = Area Navigation 

RNP   = Required Navigation Performance 

SD   =  Standard Deviation 

STAR  = Standard Terminal Arrival Route 

TMA-TM = Management Advisor with Terminal Metering 

TRACON = Terminal Radar Approach Control 

TSAS   = Terminal Sequencing and 

ZSE   =  Seattle Air Route Traffic Control Centers 

 

I. Introduction 

S the number of commercial aircraft operations increases, government and industry are developing new concepts 

and technologies to improve the capacity and efficiency of the National Airspace System (NAS). Interval 

Management (IM) is a NextGen concept that is enabled by the integration of ground and flight-deck capabilities and 

procedures designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage 

inter-aircraft spacing. One of the benefits of IM is derived from the enhanced delivery accuracy that it offers. If aircraft 

can achieve more consistent inter-arrival spacing at flow restricted points, it may be possible to reduce the spacing 

buffer used by air traffic controllers to prevent separation violations, resulting in increased throughput. Research into 

spacing applications dates back to the 1970’s and early 1980’s1-3 and across several different organizations. A 

comprehensive history of IM research is described in reference 4. 

The goal of the National Aeronautics and Space Administration’s (NASA’s) first Air Traffic Management 

Technology Demonstration (ATD-1) is to demonstrate technology that enables aircraft to use speed control to achieve 

an integrated arrival schedule, enabling the use of performance-based navigation procedures during peak traffic 

demand. In order to accomplish this goal, NASA developed and tested prototypes of three different technologies whose 

integrated use improves the efficiency of arrivals into busy airports and supports the implementation of NextGen. The 

first two technologies were the Traffic Management Advisor with Terminal Metering (TMA-TM) and Controller 

Managed Spacing (CMS), which provide terminal air traffic controllers with a deconflicted arrival schedule and 

decision support tools to help them manage to the schedule.5-9 Both TMA-TM and CMS were evaluated at the Federal 

Aviation Administration’s (FAA’s) William J. Hughes Technical Center in 2015 and transferred to the FAA, forming 

the basis for the ongoing acquisition of Terminal Sequencing and Spacing (TSAS).10 The third technology was a 

prototype of a Flight-deck based Interval Management (FIM) application that included NASA’s Airborne Spacing for 

Terminal Arrival Routes (ASTAR) spacing algorithm. FIM is the ADS-B In application that enables the flight-deck 

component of IM. FIM avionics provide pilots with speeds that they can fly to achieve or maintain a precise spacing 

interval behind another aircraft, referred to as the Target aircraft.  

As part of the agency’s mission to deliver NextGen benefits, the Federal Aviation Administration (FAA) has been 

establishing operational and technical requirements for IM. This includes integrating ground metering tools, such as 

TSAS and Ground-based Interval Management – Spacing (GIM-S), with airborne tools, such as FIM, into cohesive 

arrival and approach operations. Part of this development involves working with industry to develop Safety and 

Performance Requirements (SPR) for the IM Operations and Minimum Operational Performance Standards (MOPS) 

for the FIM avionics.11,12 The first version of the FIM MOPS was published in September 2015 and is currently under 

revision to support additional capabilities and greater aircraft integration. These industry standards complement 

ongoing acquisition efforts by the FAA to develop and deploy ground-based metering systems into the NAS. 

ATD-1’s primary contribution to the IM research was the development and demonstration of prototype FIM and 

TSAS systems and an examination of the integration of FIM with TSAS. Several simulations were conducted in 

preparation for the ATD-1 flight demonstration,13-15 and a flight demonstration of NASA’s ASTAR algorithm was 

conducted onboard Boeing’s ecoDemonstrator aircraft.16 The final human-in-the-loop simulation conducted by NASA 

under ATD-1 took place in August 2015.17-19  
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This work culminated in a NASA contract with Boeing, Honeywell, and United Airlines to develop a FIM avionics 

prototype based on the ASTAR spacing algorithm and conduct a flight test to evaluate the airborne performance of 

that prototype.20 The FIM avionics created for the flight test extended ASTAR to include most of the FIM MOPS 

functionality, supporting spacing operations on final approach, during cruise, and using both time- and distance-based 

spacing. This paper describes the results and conclusions of the flight test. Particular attention is given to the spacing 

accuracy of the FIM avionics and the rate of commanded speeds that were provided to the pilots. A separate paper is 

available that provides additional results focusing on the flight crew responses given in the end-of-run and end-of-day 

surveys.21  

II. IM Operations 

Interval Management (IM) consists of a set of ground and flight-deck capabilities and procedures that are used by 

air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. In the operational 

and technical standards, IM operations are defined in terms of the IM clearances that are provided by the controller.11 

These clearances include an Assigned Spacing Goal (ASG), which is a time or distance interval between the IM and 

Target aircraft, assigned by the controller and usually derived from metering information. The ASG can either be 

achieved at the Achieve-by Point (ABP) or maintained until the Planned Termination Point (PTP). IM Operations are 

defined for the en route, arrival, and approach phases of flight, using both time-based and distance-based ASGs. 

IM operations can be composed of a maintain stage and an achieve stage. The goal of the maintain stage is to 

maintain the ASG until the PTP. The maintain stage is designed to use state information from the Target aircraft to 

determine the spacing error; therefore, a state-based control law that is restricted to in-trail operations is used. The 

goal of the achieve stage is to achieve the ASG when crossing the ABP. The achieve stage is designed to use trajectory 

information from the IM and Target aircraft to determine the spacing error; therefore, a trajectory-based control law 

that can support merging routes is used. 

The achieve and maintain stages are procedurally combined into distinct IM clearances. The four clearances 

exercised in the ATD-1 flight test were Maintain, Capture, Cross, and Final Approach Spacing.  

 The Maintain clearance is used when the IM and Target aircraft are following a common route and the 

controller wants the IM aircraft to maintain the current in-trail spacing, as determined by the FIM 

avionics. The algorithm determines speeds that will continuously maintain the in-trail spacing within 10 

seconds until the operation terminates. This clearance is intended for tactical use, when aircraft already 

have an in-trail spacing that the controller wants. Within this flight test, the Maintain clearance was used 

during en route and arrival operations. 

 The Capture clearance is used when the IM and Target aircraft are on a common route and the controller 

wants the IM aircraft to achieve the ASG quickly and then maintain it until termination. The algorithm 

determines speeds that will immediately correct the initial spacing error, and then maintain the in-trail 

spacing within 10 seconds of the ASG until the operation terminates. This clearance is intended for use 

when the spacing between the IM and Target aircraft are close to the spacing interval that the controller 

or schedule needs. Within this flight test, the Capture clearance was used during en route and arrival 

operations. 

 The Cross clearance is used when the controller wants the IM aircraft to achieve the ASG at the ABP, and 

then maintain the ASG until termination. The achieve stage is used to correct the initial spacing error by 

the ABP, and then transitions to the maintain stage until termination. This clearance is meant for strategic 

use, with the ASG derived from metering information. Within this flight test, the Cross clearance was 

also used during both en route and arrival operations. 

 The Final Approach Spacing clearance is used when the final controller wants to use IM to control the 

rate of compression or overtake with a preceding arrival on final. This clearance is meant for tactical use, 

and the controller determines an ASG that improves the precision of the interval between successive 

arrivals. Within this flight test, the Final Approach Spacing clearance was given to one aircraft either 

established on final or on a vector to intercept the final approach course.  

 All clearances can be used with a time-based ASG, and this is the expected norm. Distance-based ASGs can be 

used, but not during the maintain stage when aircraft are descending or decelerating. In the ATD-1 flight test, distance-

based ASGs were only used during the en route cruise operations and the Cross clearances which terminated at the 

ABP.  
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III. Flight Test Description 

A. Scenario Design 

1. Flight Test Operations 

The ATD-1 flight test took place in Seattle en route (ZSE) and Moses Lake terminal (KMWH) airspace. Three 

aircraft departed from Boeing Field (KBFI) and Seattle-Tacoma International Airport (KSEA). While en route, two 

of the aircraft equipped with the FIM avionics conduced either Maintain or Capture operations. After the en route 

operation was completed, the aircraft conducted a series of arrival operations into Grant County International Airport 

(KMWH). In order to condition the aircraft for these operations, the flight test director coordinated with flight crews 

and ZSE controllers. On select days, after the approach scenarios were completed Moses Lake controllers provided 

vectors to two of the aircraft to set up Final Approach Spacing operations.  

 

2. Airspace Design 

The two Standard Terminal Arrival Routes 

(STARs) designed for the flight test were named 

the SUBDY1 arrival and UPBOB1 arrival (red 

lines in Figure 1). These STARS are connected to 

the published Area Navigation (RNAV) and 

Required Navigation Performance (RNP) Z 

approaches to runway 32R, creating a continuous 

route to the runway. Throughout the flight test 

both the Ownship and Target aircraft were 

assigned STARs and transitions to create different 

merging conditions. The SUBDY1 arrival has two 

transitions that create a medium altitude merge 

condition and both the SUBDY1 and UPBOB1 

arrivals merge at the Final Approach Fix (FAF), 

creating a low altitude merge condition.  

Hold points and IM initiation points were selected to prevent the aircraft from entering special use airspace to the 

north and from crossing certain sector boundaries, reducing the amount of coordination with air traffic control required 

to conduct the flight test. The planned IM initiation points for arrival operations were approximately 90 nmi from the 

runway. However, the actual length of the arrival operations ranged from approximately 40 to 130 nmi.*  

Routes were also defined to support en route and Final Approach Spacing operations. A cruise route defined by 

the ZIRAN, BARYN, and SINGG waypoints (purple line in Figure 1) was typically flown at FL350. In order to 

support Final Approach Spacing operations, controllers vectored aircraft onto either an extended final approach 

segment or straight segment that proceeded direct-to the final approach segment (purple lines in Figure 1). 

 

3. Lead Aircraft Delayed Speed Profiles 

When time-based metering is used, traffic flow management systems, such as Time Based Flow Management with 

TSAS enhancements, will allocate delay to aircraft in order to deconflict them at a series of meter points. Since there 

is no current method of communicating trajectories between traffic flow management systems and aircraft conducting 

IM operations, the FIM avionics use the published speeds instead of the delayed speeds to estimate the times of arrival 

for the Ownship and Target aircraft. This presents an unknown source of error that is expected to affect the performance 

of the Cross operations, and may also affect the performance of the Maintain and Capture operations.  

Even though TSAS was not used in this flight test, there was a desire to emulate the unknown delay that an aircraft 

would have if controlled by air traffic controllers utilizing TSAS and time-based metering. Figure 2 shows three 

different delayed speed profiles that were created and flown by the aircraft leading the string of IM aircraft, referred 

to as the lead aircraft. The No Delay speed profiles (black lines) followed the nominal published speeds. The Moderate 

Delay speed profiles (blue lines) had a moderate amount of delay in the TRACON (approximately 20 sec) and no 

delay in the Center. The High Delay speed profiles (red lines) had maximum delay in the TRACON (approximately 

40 sec) and moderate delay in the Center (approximately 25 sec). Figure 2 also shows the upper and lower bounds on 

                                                           
* There are two main factors that impacted the length of IM operations. First, the flight crew of the IM aircraft had to coordinate with the flight test 

director if the aircraft setup did not allow for the desired test condition. This coordination took time and delayed the start of the IM operation. 
Secondly, the data was filtered after the flight test to remove the impact of software anomalies, reducing the length of particular operations. 

 
Figure 1. Flight test airspace. 
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the speeds that the FIM avionics can command 

(grey dotted lines) and a reference slow speed 

profile (solid grey line) that emulates both the 

slowest speed that TSAS can use when 

allocating delay and the slowest speed the 

aircraft are expected to fly in the Center 

airspace.  

The process of creating the speed profiles 

began with generating a reference slow speed 

profile. In the TRACON, the slow speed profile 

was determined by subtracting 20 knots from the 

nominal speed, which was similar to adaptations 

used in previous ATD-1 simulations.14,15,17 In the 

Center airspace, it was assumed that commercial 

aircraft fly a minimum speed of 250 knots to 

absorb delay after descending below their 

Mach/CAS transition altitude. Based on how 

traffic flow management systems allocate delay, 

delay was first allocated to the TRACON and 

then to the Center. 

 

4. Wind Forecast 

Both the Flight Management System (FMS) and the FIM avionics used a single wind forecast determined at the 

beginning of each flight test day from the National Oceanic and Atmospheric Administration (NOAA) Aviation 

Weather Service. Since descent winds were not available for Grant County International Airport, they were averaged 

between Yakima and Spokane International Airport. For the FIM avionics, FL340 was the altitude used for the en 

route forecast, and FL240, FL180, 12,000 feet, 6000 feet, and the surface were the altitudes used for the descent 

forecast. To standardize data entry between the two FMS types and to align with the FIM avionics, FL340 was the 

altitude used for the FMS en route forecast, and FL180, 12000 feet, and 6000 feet were the altitudes used for the FMS 

descent forecast. 

B. Independent Variables 

This flight test investigated IM operations during three phases of flight: en route, arrival, and final approach. The 

original test plan included 124 data points (two replicates of 62 unique scenarios);22 however, tactical decisions made 

during the flight test resulted in missing, invalid, and additional data points for particular scenarios. In the end, there 

were 144 successful data points collected: 125 from arrival operations, 11 from en route operations, and 8 from final 

approach spacing operations.† 

In order to minimize the impact of schedule constraints and potential weather, the run order was designed to ensure 

the highest priority scenarios were flown, while also minimizing the impact of systematic bias and order effects on 

the results. The replicates of each scenario were assigned a priority level and the run order of the scenarios was 

randomized within each priority level. 

 

1. Arrival Scenarios 

 The arrival scenarios consisted of IM operations that started at an altitude of either FL350 or FL230 and terminated 

at the FAF. The arrival scenarios flown during the flight test were designed to evaluate five independent variables: the 

IM clearance type, whether the ASG was distance- or time-based, lead aircraft delay, initial spacing error, and whether 

the ABP location was at a medium altitude merge point or the final approach fix (Table 1). Not all combinations of 

variables were able to be investigated. For example, the location of the ABP only applies to the Cross clearance, and 

no distance-based clearances included a maintain stage during the descent. Since previous ATD-1 research was focused 

on the use of IM in a metered environment, a strong emphasis was placed on the time-based arrival operations. Of the 

125 arrival data points, 118 were time-based and 7 were distance-based. 

 The initial spacing error was varied across the test, as depicted in Figure 3. The planned spacing error for the 

Capture and Cross clearances ranged from 60 seconds early to 60 seconds late for time-based operations and from 1 

                                                           
† There were an additional 13 successfully data points collected at the end of the flight test to examine modifications to the speed constraints on the 
arrival and approach procedures; however, those data points are not discussed in this paper. 

 

Figure 2. The delayed speed profiles flown by the lead aircraft. 
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nmi early to 2 nmi late for distance-based operations. All of the initial spacing errors for the Maintain operation were 

close to zero because its objective is to maintain the initial spacing interval. The initial spacing error was challenging 

to control for and the flight test director often had to accept initial spacing errors that were different than planned. 

Some of these initial spacing errors exceeded what is expected operationally, resulting in stressful test conditions.  

 

2. En Route Scenarios 

The four planned high-altitude en route scenarios flown during the flight test were designed to evaluate three 

independent variables: IM Clearance Type, time- or distance-based ASG, and initial spacing error. The two clearance 

types that were investigated were the Maintain and Capture clearances. Of the eleven en route operations conducted, 

six were time-based and five were distance-based. The initial spacing error for the Capture operations ranged from 23 

seconds early to 20 seconds early for time-based operations and from 3.8 nmi early to 2.6 nmi late for distance-based 

operations.  

 

3. Final Approach Spacing Scenarios 

The six planned final approach scenarios flown during the flight test were designed to evaluate two independent 

variables: merge geometry and time- or distance-based ASG. For all of the final approach scenarios both the ABP and 

the PTP were located at the default location specified in the MOPS, 6.25 nmi from the runway threshold. Of the eight 

Final Approach Spacing operations flown, five were time-based operations with initial spacing errors that ranged from 

23 seconds early to 29 seconds late, and three were distance-based operations with initial spacing errors that ranged 

from 1.5 nmi early to 0.1 nmi early. Unlike the arrival and en route scenarios, only one IM aircraft was used during 

the Final Approach Spacing operations.  

C. Flight Test Aircraft  

Three aircraft participated in the flight test (Figure 4). A Dassault Falcon-900, provided by Honeywell, was used 

as the lead aircraft for a majority of the flight test. A Boeing 757-200 provided by Honeywell and a Boeing 737-900 

provided by United Airlines were equipped with ADS-B In and the FIM avionics prototype. All three aircraft were 

equipped with ADS-B Out, Global Navigation Satellite System, were Area Navigation capable, and were authorized 

to fly the published Required Navigation Performance Authorization Required approaches into the Grant County 

International Airport.  

D. Typical Flight Test Day 

During future operations, aircraft equipped with FIM avionics will be preconditioned using metering tools such as 

GIM-S and TSAS. Since these tools were not available during the flight test, a flight test director, the flight test pilots 

and air traffic controllers worked together to position the aircraft for each test condition.  

On a typical flight test day, the United Boeing-737 departed from KSEA and the Honeywell Boeing-757 and 

Falcon-900 departed from KBFI. The tower facilities at KBFI and KSEA coordinated with the Seattle TRACON to 

determine departures times that resulted in a spacing interval of approximately 20 nmi when the aircraft reached their 

cruise altitude of FL350. When the aircraft equipped with FIM avionics reached ZIRAN, they initiated an en route IM 

Table 1: Test matrix for arrival scenarios 
IM Clearance 

Type 

Time- or 

Distance-based 

Lead Aircraft 

Delay 
N 

Maintain Time 

None 6 

Medium 8 

High 4 

Capture Time 

None 17 

Medium 7 

High 8 

Cross-Merge*  Time 

None 10 

Medium 9 

High 8 

Cross-FAF**  

Time 

None 14 

Medium 11 

High 16 

Distance 

None 4 

Medium 1 

High 2 

 * Achieve-by point at a medium-altitude merge point 
** Achieve-by point at the FAF 

 

 

 

 

Figure 3. Initial spacing error for time-based arrivals. 
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operation that terminated at SINGG. After the aircraft crossed the PTP the flight crews entered information into the 

FIM avionics for the first arrival scenario, either the SUBDY1 or UPBOB1 arrival that connected to an approach to 

runway 32R.  

 For the operations that terminated at the FAF, the aircraft continued descending to their decision altitude, conducted 

a missed approach, and then proceeded to the initial points for the next operation. During climb out, each flight crew 

used their FMS to estimate their flight time to either the FAF or a common merge point and provided that time to the 

flight test director, who issued each flight crew a scheduled time of arrival to that waypoint. The flight crews 

independently coordinated with air traffic control to determine a set of maneuvers that enabled them to arrive at the 

initiation point at the desired time. When the aircraft reached their initiation point the flight crews used the FIM 

avionics to determine the current spacing interval, which was used to calculate an ASG that yielded the desired initial 

spacing error. If the calculated ASG was outside the bounds defined for this flight test (e.g., 150 to 210 seconds), the 

flight crew coordinated with the flight test director, who determined an alternative ASG. This process was repeated 

for each of the planned arrival scenarios. 

 After the arrival operations were completed the Falcon-900 returned to KBFI. If Final Approach Spacing 

operations were planned, Moses Lake TRACON controllers provided the Boeing-757 and the Boeing-737 with vectors 

to set up the Final Approach Spacing operations. Similarly to the en route and arrival scenarios, the pilots either 

modified their ASG to obtain the desired initial spacing error or coordinated with the flight test director to select an 

alternate ASG. 

E. FIM Avionics 

1. FIM Prototype 

 Figure 5 shows the prototype electronic flight bag (EFB) 

used during the flight test to conduct IM operations. A 

Configurable Graphics Display (CGD) located in the pilots’ 

primary field of view repeated critical information. The 

Boeing-757 and Boeing-737 had a Honeywell DO-317A 

compliant Traffic Processing Unit that provided ADS-B In 

data to the FIM application hosted on the EFB. The FIM 

application had a touchscreen interface that enabled the pilots 

to enter Ownship information, forecast winds, and IM 

clearance information. The EFB also had a Cockpit Display of 

Traffic Information (CDTI) that displayed nearby ADS-B Out 

aircraft. The FIM software and spacing algorithm created by 

Honeywell were based on NASA23 and RTCA24 documents, 

while the EFB displays25 and the CGD26 were influenced by a 

NASA designed prototype used in previous simulations.27 

 

Figure 5. FIM Displays on Electronic Flight Bag. 

 
Figure 4. Aircraft used in ATD-1 flight test. 
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There was no data flow from the experimental FIM system to certified avionics. 

2. Speed Guidance 

The FIM avionics provided the pilots with both speed guidance and speed conformance monitoring. The primary 

form of speed guidance was a discretized commanded speed displayed using green text on the EFBs and in white text 

on the CGSs. Pilots were expected to input the discrete commanded speed into their aircraft’s mode control panel 

speed window. When the IM commanded speed changed, the commanded speed was shown in reverse video for 10 

seconds. If a new commanded speed was not achieved quickly enough, a speed conformance monitoring function that 

used the logic described in the MOPS12 caused the commanded speed to flash in reverse video.  

A secondary form of speed guidance was provided to assist the pilots in modulating the aircraft's thrust and drag 

during a speed change. This speed guidance was displayed as a fast/slow indicator that depicted the Ownship’s speed 

relative to a reference speed provided by the speed control algorithm. The fast/slow indicator was expected to help 

obtain consistent spacing performance during large deceleration segments, such as the 210 to 170 knot deceleration 

on the SUBDY1 arrival and the 240 to 170 knot deceleration on the UPBOB1 arrival (black lines on Figure 2).  

 

3. Speed Control Algorithm 

To support the four IM clearances, two different speed control laws were implemented in the FIM avionics 

prototype: a trajectory-based speed control law and a state-based constant time delay speed control law. A general 

treatment of speed control algorithms for IM operations can be found in references 24, 28, and 29. The trajectory-

based speed control law is used for the achieve-stage of the Cross IM operation (the portion of the operation before 

the ABP) and the final approach spacing IM operation. The state-based speed control law is used for the maintain 

phase of the Cross operation (the portion of the operation after the ABP), the Capture operation, and the Maintain 

operation. These two speed control laws are based largely on version 13 of NASA’s ASTAR algorithm.23 In general, 

both control laws calculate a spacing error, a speed correction based on the spacing error, and the speed command as 

the sum of some nominal speed and the speed correction. 

For both speed control laws, kinematic 4-dimensional trajectories for the Ownship and the Target aircraft are 

produced using a copy of the FMS navigation database hosted in the EFB application along with the sensed wind, and 

the wind forecast. Since the EFB application does not have knowledge of aircraft dynamics or configuration, the 

trajectories assume a constant deceleration rate of 0.5 knot per second for descending segments and 0.75 knot per 

second for level segments. Additionally, a discovery algorithm is used to estimate the Target aircraft’s cruise altitude 

and speed from ADS-B state data.  

 The spacing error calculated by the trajectory-based speed control law is the difference between the ASG and the 

predicted spacing interval, which is calculated using trajectory information for the Ownship and Target aircraft. For 

time-based operations, the predicted spacing interval is the difference in times that the Ownship and Target aircraft 

are predicted to cross the ABP. For distance-based spacing goals, the predicted spacing interval is the predicted 

distance between the Ownship and the Target aircraft when the Target aircraft is predicted to cross the ABP. The IM 

commanded speed is the sum of the Ownship’s nominal trajectory speed, a proportional control term to null the spacing 

error, and a ground speed compensation term that is used to prevent the Ownship from closing too quickly on the 

Target aircraft.  

The spacing error used by the state-based speed control law is the difference between the ASG and the measured 

spacing interval. Calculating the measured spacing interval relies on historical state data from the Target aircraft, and 

requires the Ownship to be on the same route as the Target aircraft. For time-based spacing goals, the measured spacing 

interval is the time elapsed since the Target aircraft crossed the Ownship’s current along-path position. For distance-

based spacing goals, the measured spacing interval is the along-path distance between the Ownship and Target aircraft. 

The commanded speed is calculated as the sum of a base speed and a proportional control term. For time-based 

operations, the base speed is the Target aircraft’s time history ground speed that it flew when it was at the Ownship’s 

position, converted to an airspeed. For distance-based operations, the base speed is the Target aircraft’s current ground 

speed converted to an airspeed. 

The IM commanded speed produced by the control laws is limited before being displayed to the pilots. Limits to 

the command speed included the maximum operating speed, a ±15% boundary around the Ownship's trajectory speed 

(based on the published procedure), and regulatory speed restrictions. To reduce the number of IM speed changes, 

hysteresis is applied to the commanded speed, and the speed is discretized to a value of 5 knots when the Ownship is 

close to the PTP and 10 knots when the Ownship is not close to the PTP. 

F. Pilot Training 

In preparation for the flight test, the flight crew and flight test directors received a computer-based course 

describing the IM concept, equipment, and procedures. After completion, they travelled to NASA Langley Research 
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Center to attend a four-day hands-on training course that included classroom training and interactive simulations using 

the actual arrival and approach procedures. The objectives of the training course and simulations were to familiarize 

the pilots with the FIM avionics and IM operations and to allow the pilots and flight test director to practice positioning 

the aircraft to achieve the desired test conditions. 

The computer-based training provided a walk-through of the EFB functionality and a description of the flight test 

airspace. The classroom training and simulation were focused on graduated learning over four days. The first two days 

focused on the operation of the FIM equipment and the final two days focused on the coordination and crew resource 

management required to successfully conduct the flight test. Two simulators that emulated the Boeing-737 and 

Boeing-757 flight test aircraft were connected together and flown with a third pre-recorded aircraft, used as the lead 

aircraft. Pilots were able to practice manipulating the prototype EFB displays and develop the expertise required to 

correctly position aircraft prior to the start of each test run. The flight test director was stationed separately from the 

simulators and was able to interact with the pilots through radio communication, facilitating the establishment of 

communication protocols used during the flight test. 

G. Flight Test Participants 

Flight crews were selected by their respective flight operations department, and included Honeywell flight test 

pilots and United Airlines flight test and line pilots. All of the pilots were current, qualified to fly the aircraft in the 

position(s) they flew, had glass cockpit experience, and were RNP qualified. The pilots had 20 to 49 years of flight 

experience and had between 4,500 to 13,000 hours of total flight time. 

IV. Flight Test Results 

 The primary focus of the flight test was time-based arrival operations, which aligned with previous fast-time and 

human-in-the-loop simulations. In addition, descriptive statistics are provided for the distance-based arrival, en route, 

and final approach operations. Since the FIM avionics contained new software, some software anomalies were 

discovered during the flight test. Critical anomalies were fixed partway through the flight test, and the data were 

filtered to remove runs and portions of runs negatively impacted by the anomalies. A goal of less than 10 seconds of 

spacing error is targeted for IM operations. Some inspection of those outliers which exceeded that operational goal 

was conducted. The delivery accuracy metrics described below have been independently validated using the ADS-B 

ground surveillance. The values calculated using the flight test data and the ADS-B ground surveillance data are all 

well within 0.3 seconds for all time-based clearances. 

 When interpreting the results, it should be noted that several of the pilots that participated in this flight test were 

flight test pilots accustomed to flying very precise operation. While all pilots were instructed and trained to fly their 

aircraft similarly to line pilots, the test pilots often used more speed brake and throttle inputs than would be expected 

during typical commercial passenger operations.  

A. Time-Based Arrival Scenarios 

1. Maintain Stage Performance 

The maintain stage performance is characterized by two metrics in this paper. First, the maintain stage spacing 

accuracy indicates how accurately IM aircraft can meet the ASG at the end of the maintain stage. For time-based 

operations, the maintain stage spacing accuracy is defined as the difference between the ASG and the measured 

spacing interval at the PTP. Operationally, the maintain stage goal is a spacing error at the PTP within 10 seconds, 

95% of the time. This corresponds to a standard deviation of approximately five seconds if the data are normally 

distributed. In this flight test, every Maintain, Capture, and Cross-Merge scenario with a maintain stage terminated at 

ZAVYO, the final approach fix. 

Figure 6 and Table 2 show that the arrival scenarios surpassed the performance criteria at the PTP for the Maintain, 

Capture, and Cross-Merge operations. All time-based Maintain, Capture, and Cross-Merge arrivals had spacing errors 

within 10 seconds when they crossed ZAVYO. For each operation, the average spacing error was within 2 seconds 

and the standard deviation was less than 3 seconds. This indicates the ability of those operations to maintain precise 

spacing to the PTP. These results are consistent with a field evaluation conducted by the United Parcel Service (UPS), 

MITRE, and the FAA in 2010. They found that all of the aircraft who followed the IM speed commands were able to 

obtain spacing accuracies within 8 seconds.30 
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The second metric comes directly from the FIM standards. Once the spacing error is captured or achieved, the 

operational goal is to remain within 10 seconds until the PTP. The success criteria described in the FIM MOPS and 

SPR is to maintain the spacing error within 10 seconds for at least 95% of the maintain stage operation. For time-

based operations, the maintain stage is defined as the entire Maintain operation, the portion of the Capture operation 

that occurs after the ASG is captured (i.e., after the spacing error is less than 10 seconds), and the portion of the Cross 

operation after the Ownship crosses the ABP.  

Of the 77 operations that contained a maintain phase, 13 did not meet the performance criteria.‡ Of these 13 

outliers, 7 occurred during the 270 to 210 knot deceleration on the SUBDY1 arrival (black line in Figure 2), and was 

due to the Ownship and Target aircraft not decelerating at the same rate. Three of the cases were Cross-Merge 

operations where the spacing error at the ABP was greater than 10 seconds, resulting in spacing errors at the beginning 

of the maintain stage that were not within 10 seconds. There was one Cross-Merge case where the spacing error was 

not within 10 seconds due to both the deceleration from 270 knots to 210 knots on the SUBDY1 arrival and a spacing 

error at the ABP that was not within 10 seconds. The remaining two cases were a Cross-Merge operation that began 

after the ABP with an initial spacing error greater than 10 seconds, and a Maintain operation where spacing error 

increased as the Ownship decelerated toward its initial IM commanded speed. Analysis of these outliers reveals that 

the maintain stage performance was quite good, and that deceleration segments should be considered when designing 

procedures for use with IM. 

 

2. Achieve Stage Spacing Accuracy 

The achieve stage spacing accuracy measures how accurately the IM aircraft achieve the ASG at the ABP. For 

arrival scenarios, this metric only applies to the Cross operations. Similar to the maintain stage spacing accuracy, the 

achieve stage spacing accuracy is defined as the difference between the ASG and the spacing interval between the 

Ownship and Target aircraft at the ABP. Again, the operational goal is a spacing error within 10 seconds at the ABP, 

95% of the time. During the arrival scenarios, the ABP was either located at a medium altitude merge point (Cross-

Merge) or at the FAF (Cross-FAF).  

Figure 7 and Table 3 show the spacing performance at the ABP for the Cross-Merge and Cross-FAF operations. 

The average spacing accuracy of the Cross-FAF operations was -1.65 seconds with a standard deviation of 6.24 

seconds. The average spacing accuracy of the Cross-FAF operations was 6.24 seconds with a standard deviation of 

8.28 seconds. This performance does not meet the operational goals, though an analysis of the outliers suggest that 

this is largely attributable to experimental conditions.  

Of the 25 Cross-Merge operations, four had spacing errors greater than 10 seconds (16%). Two of these cases 

involved conditions at initiation that would not be expected operationally. Both times, the IM operation started within 

25 nmi of the ABP, with spacing errors of 19 and 28 seconds early. The Target aircraft had a ground speed 40 knots 

slower than predicted for the initial 5 to 10 nmi of the operation, likely because it was operating at slower speeds in 

order to set up the operation. This Target aircraft speed deviation caused the spacing error to increase to a value that 

was unable to be solved by the ABP, resulting in spacing errors at the ABP of 17 seconds early and 13 seconds early. 

The other two outliers for Cross-Merge operations appeared to be normal operations with adequate speed control 

                                                           
‡ One additional case technically did not meet the criteria. For one capture operation, the spacing error was captured when the Ownship was 2.2 

nmi prior to the PTP. The small amount of time during the maintain-phase combined with a small amount of noise in the spacing error signal 
resulted in spacing errors greater than 10 seconds for 6% of the maintain phase. However, the error was out of conformance for only 3 seconds. 

 

Figure 6: Maintain stage spacing accuracy for time-

based arrivals. 

 Table 2: Maintain stage spacing accuracy for 

time-based arrivals. 

Clearance 

Type N Mean (sec) SD (sec) 

Maintain 18 -1.13 2.99 

Capture 32 0.55 2.63 

Cross-Merge 27 -0.47 2.45 
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authority to null the spacing error. These two cases had spacing accuracies of 12 seconds early and 13 seconds late at 

the ABP, and will be the subject of future examination. 

Of the 41 Cross-FAF operations, 17 had spacing errors at the PTP greater than 10 seconds (41%). The exact cause 

of the poor performance of Cross-FAF operations is the subject of further study. Some of the factors that may have 

contributed to the degraded spacing accuracy are the design of the arrival procedures, speed deviations from the 

fast/slow indicator guidance, deceleration rates assumed by the spacing algorithm, and differences between the wind 

forecast and the actual winds.  

 

3. Spacing Error Capture Rate 

The MOPS defines a minimum capture rate of 3 seconds per minute for the Capture operation. The capture rate 

was measured as the difference between the initial spacing error and the 10 second threshold, divided by the time it 

took the Ownship to reduce its spacing error to ±10 seconds. Only Capture operations with initial spacing errors greater 

than 10 seconds were examined.  

The data from the time-based Capture operations indicated that only 3 out of the 30 Capture operations did not 

meet the performance criteria. The first two cases had capture rates of 1.6 and 2.5 seconds per minute. For both of 

these cases, the Ownship was the last aircraft in the three aircraft string. The lead aircraft (first aircraft in the string) 

flew a high delay speed profile and the Target aircraft had an early initial spacing error. The Ownship was speed 

limited by the ±15% speed bounds applied around the published speeds, indicating that there was not enough speed 

control authority to capture the ASG at the desired rate. The third case had a capture rate of 2.8 seconds per minute, 

just missing the design goal. As in the previous two cases, the Ownship was the last aircraft in the string. The lead 

aircraft (first aircraft in the string) flew a Medium Delay speed profile and the Target aircraft had an early spacing 

error, limiting the commanded speed to the ±15% speed bounds during the initial portion of the operation. In all of the 

other cases, there was sufficient control authority and the prototype FIM avionics met the capture rate criteria. 

 

4. Speed Command Rate 

The speed command rate indicates how frequently IM speed commands were provided to the pilots. Since the FIM 

avionics were designed as a retrofit implementation, pilots were required to recognize new speed commands and 

 

Figure 7: Achieve stage spacing accuracy for time-

based arrivals. 

Table 3: Achieve stage spacing accuracy for time-

based arrivals. 

Clearance Type N Mean (sec) SD (sec) 

Cross-Merge 25* -1.65 6.24 

Cross-FAF 41 6.24 8.28 

*Two Cross-Merge operations that began after the Ownship or 
Target aircraft crossed the ABP are not included. 

 

 

Figure 8: Speed command rate for time-based 

arrivals. 

Table 4: Speed command rate for time-based arrivals. 

Clearance 

Type 
N 

Mean 

(number/min) 

SD 

(number/min) 

Maintain 18 0.80 0.23 

Capture 32 0.54 0.18 

Cross-Merge 27 0.64 0.15 

Cross-FAF 41 0.45 0.15 
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manually input those speeds into their aircraft’s mode control panel speed window. Therefore, the speed command 

rate contributed to pilot task load. 

Over all the time-based arrival operations, the average speed command rate was 0.57 speed commands per minute, 

which equates to approximately one speed command every two minutes. Figure 8 and Table 4 show the speed 

command rate for each type of IM operation. In general, it appears that the maintain stage experienced more speed 

commands per minute than the achieve stage. The Cross-FAF operation had the lowest speed command rate, which 

used the trajectory-based speed control law the entire time, while the Maintain operation had the highest speed 

command rate and used the state-based speed control law. One potential algorithmic reason why the Maintain 

operations had a high speed command rate was that both the Target aircraft’s time-history ground speed and the spacing 

error determined the value of the speed command. Therefore, either a change in spacing error or a change in the Target 

aircraft’s ground speed can result in a speed change. It is possible that improved filtering would help eliminate some 

of the speed changes that were observed. 

Data from a survey distributed to the pilots at the end of each operation indicated that that the IM commanded 

speeds were typically operationally acceptable. The average pilot rating was 5.7 on a Likert scale ranging from “1” 

(Completely Unacceptable) to “7” (Completely Acceptable). However, pilot comments throughout the flight test 

indicated that improvements were needed to reduce the number of speed reversals (i.e., cases where there is a speed 

increase followed by a speed decrease), and the number of instances where several speed changes occur within a short 

period of time. The behavior of the speed commands will be the subject of further investigation. 

B. Distance-Based Arrival Scenarios 

All seven of the distance-based arrival scenarios were 

Cross operations with the ABP and PTP co-located at the 

FAF (i.e., Cross-FAF). The initial spacing errors ranged 

from 2.9 nmi early to 4.1 nmi late and the length of the IM 

operations ranged from approximately 41 nmi to 99 nmi. 

The desired spacing performance for distance-based 

operations is the 10 second time-based tolerance converted 

to distance using the Ownship’s and Target aircraft’s 

ground speeds (approximately ±0.5 nmi for arrival 

operations). Figure 9 shows that the distance-based Cross-

FAF operation achieved the desired spacing performance 

at the PTP for only three out of seven distance-based 

arrival scenarios.  

The two cases that were 1.5 nmi late occurred on a day 

with strong winds at low altitudes. As the Target aircraft 

flew around the radius-to-fix turn, the wind it experienced 

changed from a 60 knot headwind to a 10 knot tailwind. At around the same time, the spacing error began to diverge 

from zero. A similar increase in spacing error was observed for the time-based Cross-FAF scenarios conducted on the 

same day; however, the Ownship was able to correct the spacing error after the Target aircraft crossed the PTP. Further 

examination is required to determine why such a large percentage of the distance-based operations did not achieve the 

desired spacing accuracy. 

The speed command rate shown in Figure 9 has an average of 0.6 speed changes per minute with a standard 

deviation of 0.2 speed commands per minute, which is similar to the speed command rate observed in the time-based 

Cross-FAF arrival scenarios. During distance-based operations, the IM performance is met when the Target aircraft 

crosses the PTP. After the Target aircraft crossed the PTP, there was an average of 3.7 additional speed commands 

provided to enable the Ownship to match the ground speed of the Target aircraft at the PTP. The speed command rate 

presented in this paper does not include those additional speed commands. The average pilot rating of the operational 

acceptability of speeds during distance-based arrival operations was 5.8 on a Likert scale ranging from “1” 

(Completely Unacceptable) to “7” (Completely Acceptable).  

C. En Route Scenarios 

The eleven en route operations consisted of six time-based operations and five distance-based operations. The 

length of the time-based en route operations ranged from 49 nmi to 71 nmi, and the initial spacing errors of the Capture 

operations ranged from 22 seconds early to 20 second early. The length of the distance-based en route operations 

  

Figure 9. Spacing accuracy at the PTP (left) and 

speed command rate (right) for distance-based 

arrivals.  
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ranged from 39 nmi to 67 nmi, and the initial spacing errors of the Capture operations ranged from 3.8 nmi early to 

2.6 nmi late.§ By definition, the initial spacing errors of the maintain operations were close to zero. 

Figure 10 shows all of the spacing errors at the PTP for the time-based en route operations were well within the 

10 second performance criteria for both the Maintain and Capture operations. The average spacing error at the PTP 

for time-based en route scenarios was 2.8 seconds early with a standard deviation of 2.1 seconds. Both the maintain 

stage performance and the capture rate were examined to determine if they met the MOPS criteria. All of the operations 

maintained the spacing error within 10 seconds at least 95% of the time throughout the maintain stage. Of the two 

time-based Capture operations, one did not meet the minimum capture rate of 3 seconds per minute. Further analysis 

revealed that the capture rate was lower because it took the aircraft some time to decelerate to its initial commanded 

speed. The average speed command rate was 0.3 speed changes per minute, equivalent to approximately one speed 

command every three minutes.  

Figure 11 shows that four out of five spacing errors at the PTP for the distance-based en route operations were 

within the distance-based equivalent of the 10 second criteria, which ranged from 1.3 to 1.6 nmi depending on the 

ground speeds of the aircraft (the grey dashed line in figure 11 shows an approximation of this criteria). On average, 

the aircraft had a spacing error of 0.03 nmi at the PTP with a standard deviation of 0.9 nmi. The one aircraft that did 

not meet the performance criteria was only 0.1 nmi outside the criteria and in the process of capturing the ASG. Both 

the maintain stage performance and the Capture rate were examined to determine if they met the MOPS criteria. All 

four of the distance-based operations that contained a maintain stage were able to maintain the spacing error within 

10 seconds, 95% of the time. The one Capture operation that did not meet the minimum capture rate of 3 seconds per 

minute was the same operation that that did not achieve a spacing error within 10 seconds at the PTP. The average 

speed command rate was 0.8 speed commands per minute (SD = 0.5). Similar to the distance-based arrival scenarios, 

the speed command rate did not include speeds commanded after the Target aircraft crossed the PTP (i.e., after the 

spacing performance was met). 

D. Final Approach Scenarios 

The eight Final Approach Spacing operations consisted of five time-based operations and three distance-based 

operations. The length of the time-based Final Approach Spacing operations ranged from 14 nmi to 32 nmi, with initial 

spacing errors ranging from 23 seconds early to 29 seconds late. The length of the distance-based Final Approach 

Spacing operations ranged from 18 nmi to 22 nmi, with initial spacing errors ranged from 1.5 nmi early to 0.1 nmi 

early.** 

Figure 12 shows the spacing error at the PTP for all time-based Final Approach Spacing operations was less than 

the 10 second performance criteria. The average spacing error was 3.3 seconds with a standard deviation of 4.2 

seconds. There was one case that barely achieved the tolerance. Closer examination revealed that the Ownship flew 

an average of 9.8 knots slower than the desired speed (shown on the fast/slow indicator) throughout the final 

deceleration, which may have contributed to the spacing error at the PTP. There was an average of 5.2 speed commands 

per operation, which corresponded to an average speed command rate of 0.9 speed commands per minute with a 

standard deviation of 0.3 (Figure 13). Data from a survey distributed to the pilots at the end of each operation indicated 

                                                           
§ Since the state-based speed control law is used for the Capture and Maintain scenarios, the distance-based initial spacing error is the along path 

distance between the Ownship and the Target aircraft. 
** Since the trajectory-based speed control law is used for final approach spacing operations, the distance-based spacing error is the expected 
distance error at the PTP if both the IM and Target aircraft were to fly their expected trajectories. 

 

Figure 10. Spacing accuracy at the PTP for time-

based en route scenarios. 

 

Figure 11. Spacing accuracy at the PTP for 

distance-based en route scenarios. 
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that the IM commanded speeds provided were operationally acceptable. All of the pilots rated the acceptability of the 

commanded speeds as a 6 or higher on a Likert scale ranging from “1” (Completely Unacceptable) to “7” (Completely 

Acceptable). 

Figure 14 shows the spacing error at the PTP for all three distance-based Final Approach Spacing operations were 

within the desired tolerance, which was 10 seconds converted to a distance (approximately 0.5 nmi). The average 

spacing error was 0.09 nmi with a standard deviation of 0.25 nmi. There was an average of 3 speed commands per 

operation, corresponding to an average speed command rate of 1.1 speed commands per minute with a standard 

deviation of 0.5 (Figure 13). The number of speed commands and speed command rate do not include an average of 

1.0 additional speed command provided after the Target aircraft crossed the PTP (after the spacing performance was 

met). Data from a survey distributed to the pilots at the end of each operation indicated that the IM commanded speeds 

provided were operationally acceptable. All of the pilots rated the acceptability of the commanded speeds as a 6 or 

higher on a Likert scale ranging from “1” (Completely Unacceptable) to “7” (Completely Acceptable).  

Conclusions 

NASA contracted with Boeing, Honeywell, and United Airlines to build a FIM avionics prototype based on 

NASA’s ASTAR algorithm, and to conduct a flight test which occurred over a period of 19 days in the vicinity of 

Grant County International Airport. The flight test examined four different types of IM operations in the en route, 

arrival, and final approach phases of flight. Both the spacing accuracy and the speed command behavior was examined. 

The results indicated that aircraft were typically able to attain spacing errors less than 10 seconds, or the equivalent 

distance. However, there were cases where the spacing errors at the PTP and ABP were not within 10 seconds. Most 

of these cases were Cross arrival scenarios with the ABP and PTP co-located at the FAF (i.e., Cross-FAF). The factors 

that contributed to the degraded spacing accuracy of the Cross-FAF scenarios will be the subject of future analysis. 

Inspection of the other outliers across the data set shows many of the other operations which did not meet the 10 

second tolerance can be attributed to flight test conditions that were outside of what would be expected operationally. 

The rate at which speed commands were provided to the pilots was also examined. For time-based arrivals, the 

results indicate that the Maintain operation had the highest speed command rate and the Cross-FAF operation had the 

lowest speed command rate. While the pilots generally rated the speed commands as acceptable, their comments 

indicated that the acceptability of the speed commands would be greatly improved if there were fewer speed reversals 

and instances where there are multiple speed changes within a short period of time.  
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Figure 12. Spacing accuracy at the PTP (left) and speed 

command rate (right) for time-based final approach 

scenarios. 

  

Figure 13. Spacing accuracy at the PTP (left) and 

speed command rate (right) for distance-based final 

approach scenarios. 
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